Zn2+-sensing by the cyanobacterial metallothionein repressor SmtB: different motifs mediate metal-induced protein-DNA dissociation.

نویسندگان

  • J S Turner
  • P D Glands
  • A C Samson
  • N J Robinson
چکیده

SmtB is a member of a family of repressors which dissociate from DNA in the presence of metals; Zn2+ being the most potent inducer of metallothionein gene (smtA) transcription in vivo. In Synechococcus PCC 7942 cells devoid of chromosomal smtB, four plasmid-encoded mutants of SmtB (C61S, T11S/C14S, C121S and H105R/H106R) repressed lacZ expression driven by the smtA operator-promoter. Gel retardation assays with extracts from the complemented cells detected multiple SmtB-dependent complexes similar to those obtained with extracts from wild-type cells or with recombinant-SmtB. Elevated [Zn2+] alleviated repression in vivo by all of the mutants except H105R/H106R. These His residues (one or both) are therefore essential for Zn2+-sensing while, contrary to expectations, Cys residues are not. Hence different motifs facilitate metal-induced DNA-dissociation by SmtB and ArsR (the related oxyanion-sensing repressor), presumably generating variety in the spectra of metals sensed. Nucleotides and amino acids involved in DNA-SmtB interaction have been further defined/inferred and we also confirm that additional unknown factors form specific associations with the smt operator-promoter in elevated [Zn2+].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparative Analysis Of Heavy-Metal Ion Sensing Mechanisms With Transcription Factors, Smtbs, From Freshwater Synechococcus Sp. PCC 7942, And Marine Synechococcus Sp. PCC 7002: Evolutionary And Structural Aspects

Metal-responsive transcription factors play a crucial role in the metal ion homeostasis with both cellular metabolism and environmental metal availability. In present work, we studied structural and evolutionary features of a transcription repressor, SmtB from freshwater Synechococcus sp. PCC 7942 and its homologs from other cyanobacteria in detail. We mined putative SmtB-like zinc sensors from...

متن کامل

Comparative study of the different mechanisms for zinc ion stress sensing in two cyanobacterial strains, Synechococcus sp. PCC 7942 and Synechocystis sp. PCC 6803

In response to an increased level of Zn(2+), Synechococcus sp. PCC 7942 expresses SmtA, a metallothionein-like metal-chelating protein, while Synechocystis sp. PCC 6803 expresses ZiaA, a transporter of Zn(2+). The gene expression of these proteins is regulated by repressor protein, SmtB and ZiaR, respectively. In spite of contributing to different response systems, both repressor proteins belon...

متن کامل

A novel cyanobacterial SmtB/ArsR family repressor regulates the expression of a CPx-ATPase and a metallothionein in response to both Cu(I)/Ag(I) and Zn(II)/Cd(II).

A novel SmtB/ArsR family metalloregulator, denoted BxmR, has been identified and characterized from the cyanobacterium Oscillatoria brevis. Genetic and biochemical evidence reveals that BxmR represses the expression of both bxa1, encoding a CPx-ATPase metal transporter, as well as a divergently transcribed operon encoding bxmR and bmtA, a heavy metal sequestering metallothionein. Derepression o...

متن کامل

Construction of a self-luminescent cyanobacterial bioreporter that detects a broad range of bioavailable heavy metals in aquatic environments

A self-luminescent bioreporter strain of the unicellular cyanobacterium Synechococcus sp. PCC 7942 was constructed by fusing the promoter region of the smt locus (encoding the transcriptional repressor SmtB and the metallothionein SmtA) to luxCDABE from Photorhabdus luminescens; the sensor smtB gene controlling the expression of smtA was cloned in the same vector. The bioreporter performance wa...

متن کامل

Newer systems for bacterial resistances to toxic heavy metals.

Bacterial plasmids contain specific genes for resistances to toxic heavy metal ions including Ag+, AsO2-, AsO4(3-), Cd2+, Co2+, CrO4(2-), Cu2+, Hg2+, Ni2+, Pb2+, Sb3+, and Zn2+. Recent progress with plasmid copper-resistance systems in Escherichia coli and Pseudomonas syringae show a system of four gene products, an inner membrane protein (PcoD), an outer membrane protein (PcoB), and two peripl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nucleic acids research

دوره 24 19  شماره 

صفحات  -

تاریخ انتشار 1996